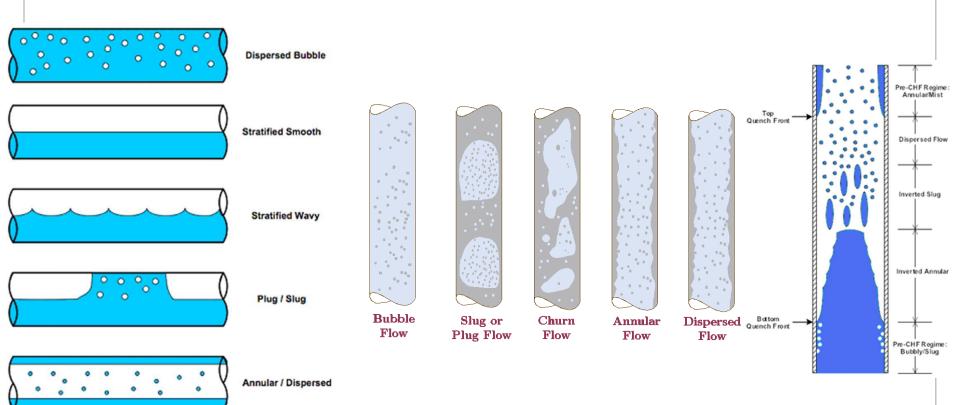
Six Field Governing Equations for RELAP5

Mr. Glenn Roth, Prof. Fatih Aydogan

Mechanical Engineering Department,
University of Idaho
International RELAP Users' Group Seminar
Idaho Falls, ID
August 13-14, 2015

Overview

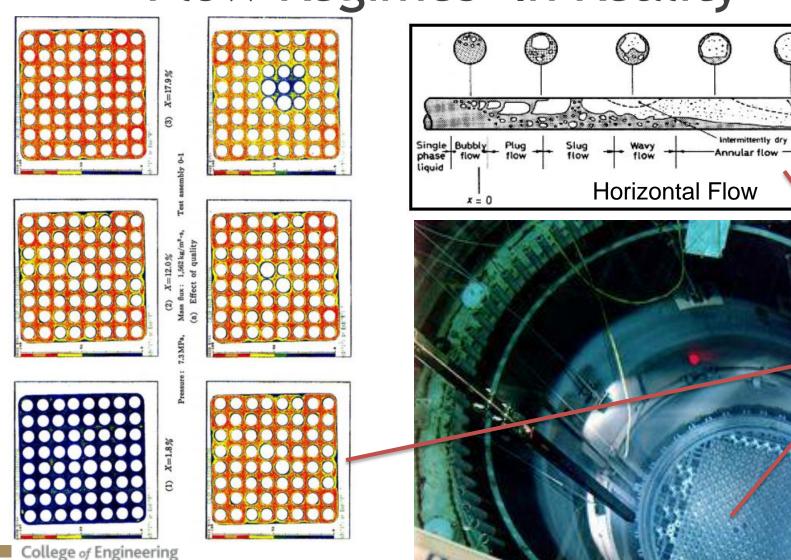
- New Governing Equations
- Closure Relationships



Two-Phase Methodolgy

- TRAC, VIBRE, RELAP5, RELAP5/SCDAP, RELAP5-3D & most of the system and subchannel codes have 2 fields:
 - liquid and vapor
- Control volumes are completely liquid, completely vapor, or partially liquid/vapor
 - Void fraction computed to determine percentage of control volume that is vapor
 - Lumped Approach is used

Flow Regimes -Theoretical-



Simple Pipe Geometries

University of Idaho

College of Engineering

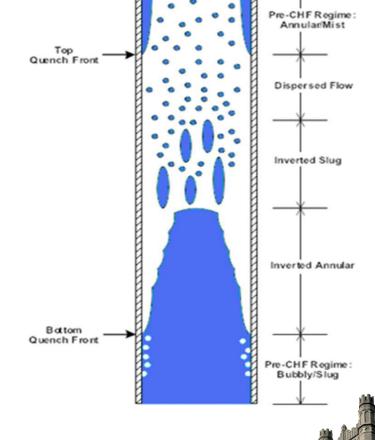
Flow Regimes -In Reality-

Simple Pipe

Fuel Core

Fuel Bundle

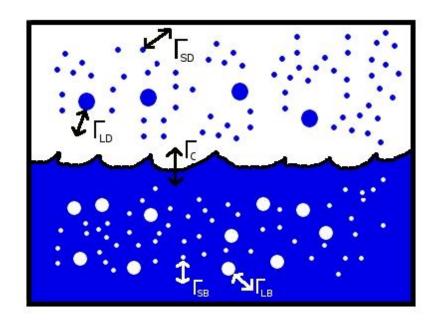
Six-Field Model


VAPOR

2Fields

LIQUID

6Fields


- Increase modeled fields in RELAP to include bubbles and droplets
- Mass, Momentum, and Energy Balance Equations are developed for:
 - 1. Continuous Vapor
 - 2. Large Bubble
 - 3. Small Bubble
 - 4. Continuous Liquid
 - 5. Large Droplet
 - 6. Small Droplet

University of Idaho

Considerations For Multiple Field Models

- Multiple interfaces between fields
 - Phase change
 - Shear forces
- Closure relationships required
 - Heat Transfer
 - Relative Velocities
- Physical phenomena that cause field transitions
 - Entrainment
 - De-entrainment
 - Spacer grids
 - Flow breakup

University of Idaho

Mass Balance - Continuous Liquid

$$\underbrace{\frac{\partial}{\partial t}\left(\alpha_f\rho_f\right) + \nabla\cdot\left(\alpha_f\rho_f\vec{v}_f\right)}_{\text{Time rate of change convection of mass}} + \underbrace{\nabla\cdot\left(\alpha_f\rho_f\vec{v}_f\right)}_{\text{Mass}} = -\Gamma_g - \underbrace{S_{LD,E}^{'''} - S_{SD,E}^{'''} + S_{LD,DE}^{'''} + S_{SD,DE}^{'''}}_{\text{Mass exchange due to entrainment/deschange}} + \underbrace{S_{LD,DE}^{'''} - S_{SD,E}^{'''} + S_{LD,DE}^{'''} + S_{SD,DE}^{'''}}_{\text{entrainment}}$$

- S_{LD,E}" Loss term for large droplet entrainment
- S_{SD,E}" Loss term for small droplet entrainment
- S_{LD,DE}" Source term for large droplet deentrainment
- S_{SD,DE}" Loss term for small droplet de-entrainment

Mass Balance - Large Droplet

$$\frac{\partial}{\partial t} \left(\alpha_{LD} \rho_f \right) + \nabla \cdot \left(\alpha_{LD} \rho_f \vec{v}_{LD} \right) = -\Gamma_{LD} + S_{LD,E}^{"''} - S_{LD,DE}^{"''} - S_{LD,FB}^{"''} - S_{SD,C}^{"''} \right)$$

- S_{LD,E}" Source term for large droplet entrainment (same as previous equation)
- S_{SD,C}" Source term from small droplets coalescing into large droplets
- S_{LD,DE}" Loss term for large droplet de-entrainment
- S_{LD,SB}" Loss term for large droplets breaking up on spacer grids (joining small droplet field)
- S_{LD,FB}" Loss term for large droplet flow break-up

University of Idaho

Mass Balance - Small Droplet

$$\frac{\partial}{\partial t} \left(\alpha_{SD} \rho_f \right) + \nabla \cdot \left(\alpha_{SD} \rho_f \vec{v}_{SD} \right) = -\Gamma_{SD} + S_{SD,E}^{"''} + S_{LD,SB}^{"''} + S_{LD,FB}^{"''} - S_{SD,DE}^{"''} - S_{SD,C}^{"''} \right)$$

- S_{SD,E}" Source term for small droplet entrainment
- S_{LD,SB}" Source term from large droplets breaking up on spacer grids
- S_{LD,FB}" Source term for large droplet flow break-up
- S_{SD,DE}" Loss term for small droplet de-entrainment
- S_{SD,C} " Loss term from small droplets coalescing into large droplets

Momentum Balance - Continuous Liquid

$$\alpha_f \rho_f \frac{D\vec{v}_f}{Dt} =$$

Rate of change of momentum

$$-\alpha_f \nabla p_f +$$

Momentum change due to pressure gradient

$$\nabla \cdot \left[\alpha_f \left(\mathfrak{T}_f + \mathfrak{T}_f^T\right)\right] +$$

Average viscous stress and turbulent stress effects

$$\alpha_f \rho_f \vec{g}_f +$$

$$(p_{fi} - p_f) \nabla \alpha_f +$$

$$(p_{fi}-p_f)\nabla\alpha_f + (\vec{v}_{i,L}-\vec{v}_f)\Gamma_L + (\vec{v}_{i,LB}-\vec{v}_f)\Gamma_{LB} + (\vec{v}_{i,SBu}-\vec{v}_f)\Gamma_{SBu} +$$

Body force effects

Pressure change between interface and continuous liquid

Momentum exchanged from phase change

$$M_{if}$$
 –

Interfacial and skin drag

$$\nabla \alpha_f \cdot \mathfrak{T}_{fi,g} - \nabla \alpha_f \cdot \mathfrak{T}_{fi,SBu} - \nabla \alpha_f \cdot \mathfrak{T}_{fi,LB} - \nabla \alpha_f \cdot \mathfrak{T}_{fi,LB}$$

Momentum Transfer by Interfacial Shear

$$S_{LD,E}^{\prime\prime\prime}v_{LD} - S_{SD,E}^{\prime\prime\prime}v_{SD} + S_{SD,DE}^{\prime\prime\prime}v_{SD} + S_{LD,DE}^{\prime\prime\prime}v_{LD}$$

Droplet Entrainment/De-Entrainment

College of Engineering

Momentum Balance - Continuous Liquid Source Terms

$$S_{LD,E}^{"''}v_{LD} - S_{SD,E}^{"''}v_{SD} + S_{SD,DE}^{"''}v_{SD} + S_{LD,DE}^{"''}v_{LD}$$
Droplet Entrainment/De-Entrainment

- v_{LD} , v_{SD} velocities of large and small droplets, respectively
- S_{LD.E}" Loss term for large droplet entrainment
- S_{SD,E}" Loss term for small droplet entrainment
- S_{LD,DE}" Source term for large droplet de-entrainment
- S_{SD,DE} " Loss term for small droplet de-entrainment

Momentum Balance - Large Droplets

$$\alpha_{LD}\rho_{f}\frac{D\vec{v}_{LD}}{Dt} = -\alpha_{LD}\nabla p_{LD} + \alpha_{LD}\rho_{f}\vec{g}_{LD} + (p_{i,LD} - p_{LD})\nabla \alpha_{LD} + (\vec{v}_{i,LD} - \vec{v}_{LD})\Gamma_{LD} + M_{i,LD} - \nabla \alpha_{LD}\cdot \mathfrak{T}_{LDi,g} + S_{LD,E}^{"'}\vec{v}_{LD} - S_{LD,SB}^{"'}\vec{v}_{LD} - S_{LD,FB}^{"'}\vec{v}_{LD} - S_{LD,DE}^{"'}\vec{v}_{LD} + S_{SD,C}^{"'}\vec{v}_{SD}$$

- S_{LD,E}" Source term for large droplet entrainment S_{SD,C}"
 Source term from small droplets coalescing into large droplets
- S_{LD,DE}" Loss term for large droplet de-entrainment
- S_{LD,SB}" Loss term for large droplets breaking up on spacer grids (joining small droplet field)
- S_{LD,FB}" Loss term for large droplet flow break-up

University of Idaho

Momentum Balance - Small Droplets

$$\alpha_{SD}\rho_f \frac{D\vec{v}_{SD}}{Dt} = -\alpha_{SD}\nabla p_{SD} + \alpha_{SD}\rho_f \vec{g}_{SD} + (p_{i,SD} - p_{SD})\nabla \alpha_{SD} + (\vec{v}_{i,SD} - \vec{v}_{SD})\Gamma_{SD} + M_{i,SD} - \nabla \alpha_{SD}\cdot \mathfrak{T}_{SDi,g} + S_{SD,E}^{"'}\vec{v}_{SD} + S_{LD,SB}^{"'}\vec{v}_{LD} + S_{LD,FB}^{"'}\vec{v}_{LD} - S_{SD,DE}^{"'}\vec{v}_{SD} - S_{SD,C}^{"''}\vec{v}_{SD}$$

- S_{SD.E}" Source term for small droplet entrainment
- S_{LD,SB}" Source term from large droplets breaking up on spacer grids
- S_{LD.FB}" Source term for large droplet flow breakup
- S_{SD.DE}" Loss term for small droplet de-entrainment
- S_{SD,C}" Loss term from small droplets coalescing into large droplets University of Idaho

College of Engineering

Energy Balance - Continuous Liquid

$$\alpha_f \rho_f \frac{D_f h_f}{Dt} = -\nabla \cdot \alpha_f \left(\vec{q}_f - \vec{q}_f^T \right) +$$

Rate of energy change, with convective effects

Average conduction and turbulent heat flux

$$\alpha_f \frac{D_f p_f}{Dt} +$$

Flow work

$$\Phi_f^T + \Phi_f^\mu +$$

Turbulent work effect source and viscous dissipation

$$\Gamma_{f,i}\left(h_{f,i}-h_{f}\right)+\Gamma_{f,w}\left(h_{f,w}-|h_{f}\right)+\Gamma_{f,SBu}\left(h_{f,SBu}-h_{f}\right)+\Gamma_{f,LB}\left(h_{f,LB}-h_{f}\right)+$$

Energy exchange due to phase change at interfaces and near the wall

$$a_{i}q_{f,i}^{'''}+a_{i,SBu}q_{SBu,i}^{'''}+a_{i,LB}q_{LB,i}^{'''}+a_{w,f}q_{w,f}^{'''}+\\$$

Energy exchange due to heat transfer at interfaces and from the wall

$$(p_f-p_{f,i})\,\frac{D_f\alpha_f}{Dt}\,+\,$$

$$M_{i,f} \cdot (\vec{v}_{f,i} - \vec{v}_f) -$$

$$\nabla \alpha_f \cdot \mathfrak{T}_{f,i} \cdot (\vec{v}_{f,i} - \vec{v}_f) -$$

Interfacial pressure differences

Interfacial drag between continuous fields

Interfacial shear stress

$$S_{LD,E}^{'''}h_f - S_{SD,E}^{'''}h_f + S_{LD,DE}^{'''}h_{LD} + S_{SD,DE}^{'''}h_{SD}$$

Energy Balance - Continuous Liquid Source Terms

$$S_{LD,E}^{'''}h_f - S_{SD,E}^{'''}h_f + S_{LD,DE}^{'''}h_{LD} + S_{SD,DE}^{'''}h_{SD}$$

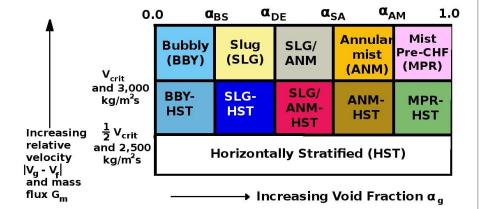
- h_f Enthalpy of continuous liquid
- h_{LD} , h_{SD} Enthalpy of large and small droplets
- S_{LD,E}" Loss term for large droplet entrainment
- S_{SD,E}" Loss term for small droplet entrainment
- S_{LD,DE}" Source term for large droplet deentrainment
- S_{SD,DE}" Loss term for small droplet deentrainment

Energy Balance - Large Droplet

$$\alpha_{LD}\rho_{LD} \frac{D_{LD}h_{LD}}{Dt} = \Gamma_{LD,i} (h_{LD,i} - h_{LD}) + a_i q_{LD,i}^{"''} + (p_{LD} - p_{LD,i}) \frac{D_{LD}\alpha_{LD}}{Dt} + M_{i,LD} \cdot (\vec{v}_{LD,i} - \vec{v}_{LD}) - \nabla_{LD,i} \cdot (\vec{v}_{LD,i} - \vec{v}_{LD}) + S_{LD,C}^{"''} h_{SD} + S_{LD,E}^{"''} h_{f} - S_{LD,SB}^{"''} h_{LD} - S_{LD,FB}^{"''} h_{LD} - S_{LD,DE}^{"''} h_{LD}$$

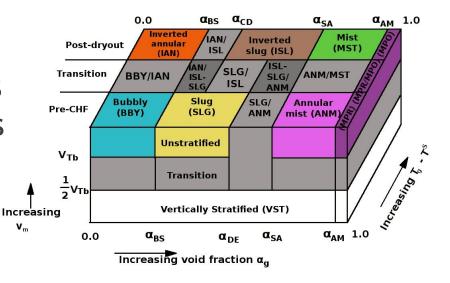
Energy Balance - Small Droplet

$$\alpha_{SD}\rho_{SD} \frac{D_{SD}h_{SD}}{Dt} = \Gamma_{SD,i} (h_{SD,i} - h_{SD}) + a_i q_{SD,i}^{"''} + (p_{SD} - p_{SD,i}) \frac{D_{SD}\alpha_{SD}}{Dt} + M_{i,SD} \cdot (\vec{v}_{SD,i} - \vec{v}_{SD}) - \nabla_{SD} \cdot \mathfrak{T}_{SD,i} \cdot (\vec{v}_{SD,i} - \vec{v}_{SD}) - S_{LD,C}^{"''} h_{SD} + S_{SD,E}^{"''} h_f + S_{LD,SB}^{"''} h_{LD} + S_{LD,FB}^{"''} h_{LD} - S_{SD,DE}^{"''} h_{SD}$$


Governing Equation Closure

- Source terms must be resolved to solve governing equations
- Source term solutions depend on flow regime
- Flow regimes are determined in RELAP
 - Flow rate
 - Subcooling
 - Void fraction

Flow Regime Determination


- Flow regime determined by void fraction, flow velocity, subcooling, and orientation
- Regime determines
 heat transfer
 correlations between
 phases and pipe walls

Flow Regime Determination

- Same maps used for channel and pipe flows
 - Individual correlations for channels and pipes

Mass Closure

- Physical transport of working fluid between fields
- Model of droplet breakup on spacer grids
- Model of flow breakup
 - Based on Weber number
- Droplet entrainment
 - Orientation-dependent
- Models to capture coalescence of small droplets
- Entrainment/De-Entrainment models
- The bulk of these models will be new to RELAP

Momentum Closure

- Relative velocities between fields
 - Interfacial drag used to compute relative velocity
 - Drift Flux Model
 - Drag Coefficient Model
 - Depend on flow configuration and characteristics
 - Wall drag also impacts field velocities
- Six-Field equations allow for specifics of flow geometry to be used in drag calculations

Energy Closure

- Heat transfer between fields needed to compute relative enthalpy of each field
- Models already available in RELAP for heat transfer between bubbles and vapor, annular flow and vapor core, etc.
- Six-Field equations allow for specifics of flow geometry to be used in heat transfer calculations

Selected Relevant Publications

- <u>Derivation of new mass, momentum, and energy conservation equations for two-phase flows</u>, GA Roth, F Aydogan, Progress in Nuclear Energy 80, 90-101
- <u>Development of Governing Equations Based on Six Fields for the RELAP Code</u>, Nuclear Science and Engineering Journal, RELAP5-3D Special Issue, 2015 (In Press)
- Theory and Implementation of Nuclear Safety System Codes Part I: Conservation
 Equations, Flow Regimes, Numerics and Significant Assumptions, Progress in Nuclear

 Energy Journal, 2014
- Theory and Implementation of Nuclear Safety System Codes Part II: System Code Closure Relations, Validation, and Limitations, Progress in Nuclear Energy Journal, 2014
- <u>Six-Field Governing Equation Development for Advanced System Codes</u>, G Roth, F Aydogan, Nureth-16, 2015
- <u>Momentum and Energy Closure Models for Two-Phase Flow Six-Field Model</u>, G Roth, F Aydogan, Nuclear Engineering and Design Journal, Under Review
- <u>Mass Closure Models for Two-Phase Flow Six-Field Model</u>, G Roth, F Aydogan, Nuclear Engineering and Design, Under Review

Future Work

 Implement governing equations and closure models in RELAP5

